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Abstract. We study the transition from stochasticity to determinism in calcium oscillations via diffusive
coupling of individual cells that are modeled by stochastic simulations of the governing reaction-diffusion
equations. As expected, the stochastic solutions gradually converge to their deterministic limit as the
number of coupled cells increases. Remarkably however, although the strict deterministic limit dictates a
fully periodic behavior, the stochastic solution remains chaotic even for large numbers of coupled cells if the
system is set close to an inherently chaotic regime. On the other hand, the lack of proximity to a chaotic
regime leads to an expected convergence to the fully periodic behavior, thus suggesting that near-chaotic
states are presently a crucial predisposition for the observation of noise-induced chaos. Our results suggest
that chaos may exist in real biological systems due to intrinsic fluctuations and uncertainties characterizing
their functioning on small scales.

PACS. 05.40.-a Fluctuation phenomena, random processes, noise, and Brownian motion – 05.45.-a Non-
linear dynamics and chaos – 05.45.Tp Time series analysis – 87.16.Ac Theory and modeling; computer
simulation

1 Introduction

Mathematical modeling is commonly used when studying
the behavior and properties of biological systems. Tra-
ditionally, the temporal behavior of a system is thereby
described by a set of ordinary differential equations. This
deterministic approach assumes that the temporal evolu-
tion of a reacting system is a continuous process, which
is acceptable only if the number of molecules, participat-
ing in forming the solution, is large enough. In systems,
where molecule numbers are rather small, however, it is
required to simulate the temporal development of a react-
ing system by stochastic algorithms. In general, realistic
biological systems, especially at the cellular but partially
also tissue level, where volumes and particle concentra-
tions are indeed low, require the slightly more sophisti-
cated stochastic approach.

It is a well-established fact that intracellular calcium
is one of the most important second messengers in the cy-
tosol of living cells [1,2]. In a large variety of cell types,
calcium oscillations regulate and define many crucial pro-
cesses, ranging from muscle contractions and fertilization
to cell death [3]. Almost from the outset of calcium oscil-
lation investigations, experiments have been accompanied
by mathematical modeling. Since the number of mem-
brane receptors, ion channels, and calcium ions in some
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organelles is very low, stochastic effects cannot always
be neglected. Therefore the stochastic modeling of intra-
cellular calcium signaling pathways has recently gained a
remarkable attention [2,4–8]. Several different aspects of
calcium signaling in various types of cells have been recog-
nized to require a stochastic treatment. Stochastic models
have been developed for the modeling of single calcium
channels [6,9], intracellular calcium oscillations [7,10], and
for the intracellular calcium wave propagation [4,5]. In ad-
dition, coherence and stochastic resonance phenomena on
the temporal [11–13] and spatial [14] scale as well as the
transition from stochasticity to determinism [5,8,15] has
been investigated.

Several techniques have been proposed and developed
in order to take into account influences of stochastic ef-
fects, ranging from additive noisy perturbations of system
parameters or variables to conventional birth-death pro-
cesses governed by master equations [16]. As an alterna-
tive, Monte Carlo procedures for the numerical simulation
of reacting systems have also been developed (for review
see [17]), and their implications in various systems have
turned out to be immense.

It is a widespread and extremely well documented
fact that noise can dramatically influence the system’s
dynamics. Consequently, the impact of noise on differ-
ent dynamical systems presents a mushrooming field of
research. Although numerous studies have been reported
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that are related with the role of fluctuations in dynamical
systems, in the present paper we are focused on noise-
induced chaos. The phenomenon was first observed in
a driven nonlinear oscillator by Crutchfield et al. [18],
and after that studied via the noisy logistic map [19]
and biochemical systems [20]. Later on, several reports
have been performed about the noise-inducement of chaos
in systems, which are deterministically in a non-chaotic
regime [21–26].

In the present paper we extend above findings and
show that internal stochastic effects, determining and reg-
ulating cellular dynamics, are able to induce chaos in the
collective behavior of diffusively coupled cells if the bifur-
cation parameter is set proximately to chaotic behavior
in bifurcation diagram. As expected, for large ensemble
sizes the stochastic solutions seem to gradually converge
to their deterministic limit, but we find, that in case of
periodic deterministic limits the stochastic collective solu-
tions are periodic only if the system is not near a chaotic
state. Otherwise, internal fluctuations induce chaos, al-
though the number of coupled cells is large, so that the
determinism in not disputable. We confirm our finding
by calculating the return map, the normalized autocor-
relation function and the maximal Lyapunov exponent.
The results are discussed in context of possible explana-
tion of chaotic behavior usually observed experimentally
in recordings of real-life functioning of whole organs.

2 Calcium dynamics of coupled cells

The mathematical model used to describe the temporal
dynamics of Ca2+ is determined by theoretical frame-
work of Houart et al. [27]. Specifically, the model considers
changes of free Ca2+ concentration in the cytosol (Z), in
the intracellular calcium store (Y ), as well as the dynamics
of IP3 (A). Here, the model equations are presented only
briefly (for a detailed description see [27]). The free Ca2+

concentrations in the cytosol, in the intracellular calcium
store and the concentration of IP3 are calculated by the
following differential equations (the parameter values used
in our calculations are quoted in the caption of Fig. 1):

dZ

dt
= Vin − V2 + V3 + kfY − kZ, (1)

dY

dt
= V2 − V3 − kfY, (2)

dA

dt
= βV4 − V5 − εA, (3)

where
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Fig. 1. Bifurcation diagram for cytosolic calcium in a single
cell. Grey lines indicate parameter values used in our calcula-
tions. In the inset it can be noticed that in one case the system
is set close to the chaotic regime (β = 0.639). Importantly, this
bifurcation diagram has been shown already in [27], whereas
here we show it for completeness and basic introduction of
the employed model. System parameters are: K2 = 0.1 µM,
K5 = 0.3194 µM, KA = 0.1 µM, Kd = 1.0 µM, KY = 0.3 µM,
KZ = 0.6 µM, k = 10.0 s−1, kf = 1.0 s−1, ε = 11.0 s−1,
n = 4, m = 2, p = 1, V0 = 2.0 µM s−1, V1 = 2.0 µM s−1,
VM2 = 6.0 µM s−1, VM3 = 30.0 µM s−1, VM4 = 3.0 µM s−1,
VM5 = 50.0 µM s−1.

The spatial extension of the model is devised so that indi-
vidual cells are arranged on a square lattice with periodic
boundary conditions. The coupling is modeled by intro-
ducing an additional diffusive flux of the form D∇2Zi,j

to the differential equation describing changes of cytoso-
lic calcium concentration Zi,j (Eq. (1)) in each of the
coupled cells on the L × L (i, j ∈ [1, L]) square lattice,
whereby D is the diffusion coefficient. In the lattice, the
cell corresponding to Zi,j has four neighbors located to the
north, south, east and west with concentrations Zi+1,j ,
Zi−1,j, Zi,j+1 and Zi,j−1, respectively. When the diffu-
sion process is approximated by the first-order transport
reaction rate, we have D∇2Zi,j ≈ D(Zi+1,j + Zi−1,j +
Zi,j+1 + Zi,j−1 − 4Zi,j)/∆δ2, where ∆δ represents the
spacing between nearest-neighbor cells. For simplicity we
define the junctional coupling coefficient as γ = D/∆δ2,
using γ = 20 s−1 in all below calculations. Although IP3

is also an important messenger in intercellular communi-
cation, for simplicity and without loss of generality, in our
calculations diffusive coupling via IP3 is not considered.

To simulate the system stochastically, we used Gille-
spie’s τ -leap method [28], which is an approximation of
the exact stochastic simulation method [29], but is com-
putationally less expensive. Importantly, since we are deal-
ing with differential equations, the stochastic simulation
is employed similarly as exemplified by Gracheva et al. [5]
or Li et al. [12], where reaction rates are ascribed to
fluxes, constituting the differential equations. These re-
action rates determine, through a Poissonian distribution,
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Table 1. Reaction rates and corresponding stochastic processes entailed in a given iteration of the employed τ -leap algorithm.
Note that Ω = NAV .

Reaction rate Stochastic process

r1 = ΩVin Zi,j → Zi,j + k1/Ω

r2 = ΩV2 Zi,j → Zi,j − k2/Ω, Yi,j → Yi,j + k2/Ω

r3 = ΩV3 Zi,j → Zi,j + k3/Ω, Yi,j → Yi,j − k3/Ω

r4 = ΩkfY Zi,j → Zi,j + k4/Ω, Yi,j → Yi,j − k4/Ω

r5 = ΩkZ Zi,j → Zi,j − k5/Ω

r6 = Ωβ V4 Ai,j → Ai,j + k6/Ω

r7 = ΩV5 Ai,j → Ai,j − k7/Ω

r8 = ΩεA Ai,j → Ai,j − k8/Ω

r9 = ΩD |Zi+1,j − Zi,j | Zi,j → Zi,j + k9/Ω, Zi+1,j → Zi+1,j − k9/Ω for Zi+1,j − Zi,j > 0

Zi,j → Zi,j − k9/Ω, Zi+1,j → Zi+1,j + k9/Ω for Zi+1,j − Zi,j < 0

r10 = ΩD |Zi−1,j − Zi,j | Zi,j → Zi,j + k10/Ω, Zi−1,j → Zi−1,j − k10/Ω for Zi−1,j − Zi,j > 0

Zi,j → Zi,j − k10/Ω, Zi−1,j → Zi−1,j + k10/Ω for Zi−1,j − Zi,j < 0

r11 = ΩD |Zi,j+1 − Zi,j | Zi,j → Zi,j + k11/Ω, Zi,j+1 → Zi,j+1 − k11/Ω for Zi,j+1 − Zi,j > 0

Zi,j → Zi,j − k11/Ω, Zi,j+1 → Zi,j+1 + k11/Ω for Zi,j+1 − Zi,j < 0

r12 = ΩD |Zi,j−1 − Zi,j | Zi,j → Zi,j + k12/Ω, Zi,j−1 → Zi,j−1 − k12/Ω for Zi,j−1 − Zi,j > 0

Zi,j → Zi,j − k12/Ω, Zi,j−1 → Zi,j−1 + k12/Ω for Zi,j−1 − Zi,j < 0

how much the values of Z, Y and A will increase or de-
crease in a given time interval τ . Importantly, this is a cru-
cial step in accommodating the Gillespie’s stochastic sim-
ulation, initially intended for chemical reaction schemes,
so that it can be formulated on the basis of a differen-
tial equation. In accordance with the fluxes, a discrete
change of particular concentration of the form kx/(NAV )
is performed at each iteration, where NA is the Avogadro’s
number, V is the volume of each coupled cell and kx is an
integer, obtained from the Poissonian

P (rx, τ) =
e−rxτ (rxτ)kx

kx!
, (8)

where rx (x = 1...12) are reaction rates of all possible
stochastic processes. In Table 1 a description of those rates
and the corresponding processes is presented. During a
time interval τ , each of the twelve reaction rates is eval-
uated and the related stochastic process is executed as
dictated by kx obtained from equation (8).

Importantly, V directly determines the level of inter-
nal fluctuations, which are best expressed by low particle
numbers and vanish in the thermodynamic limit given by
V → ∞. Since concentrations Z, Y , and A are of the same
order of magnitude, the number of particles depends di-
rectly on the volume of the corresponding compartment.
The smallest volume appearing in the model represents
the intracellular calcium store, of which the volume is
around V = 30 µm3. According to the relation between
the concentration (c) and the number of particles (N)
given by c = N/(NAV ), and for the aforementioned vol-
ume V , the number of particles by the simulation in each
compartment varies between 3×103 and 104. In this case,
the signal of each individual cell is substantially burdened

and blurred by the impact of stochasticity, as discussed
already in [8].

3 Results

First, we demonstrate in Figure 1 the bifurcation dia-
gram showing minima and maxima of cytosolic calcium
concentration (Z) in a single cell. The model equations
(Eqs. (1–3)) were integrated numerically with fixed pa-
rameter values listed in the caption of Figure 1, whereas
the level of stimulation β was taken as the bifurcation pa-
rameter. Noteworthy, the model exhibits a rich dynamical
behavior explored accurately already within [27], whereas
for our analyses we focus on two dynamical states in par-
ticular; namely on β = 0.60 yielding periodic oscillations,
and on β = 0.639 also yielding periodic behavior, but
importantly, such that is in immediate parametrical prox-
imity to an abrupt transition to chaos appearing at β =
0.6398. Although in the continuation we will mainly focus
on the dynamics of coupled cells (L > 1), the bifurcation
diagram for the single cell presented in Figure 1 provides
insights into the dynamics of the most basic structure of
the model, and as such is representative also of the coupled
system. In particular, although the bifurcation diagram,
and especially the specific bifurcation points, may shift in
dependence on L and D, these changes are minute and
insignificant for the parameters used within the present
work (see also Fig. 6).

We observe the collective dynamics of the ensemble of
cells, which is approximated via a simple mean-field ap-

proximation given by (z, y, a) = (1/L×L)
L×L∑

i=1

(Zi, Yi, Ai).

Evidently, the total amount of coupled cells is varied via
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Fig. 2. Phase space plots (top row) obtained via stochastic integration (black line), and the pertaining average directional
vector field approximations (bottom row) for one cell (left column) and the collective dynamics of 10 × 10 cells (right column)
for β = 0.60. The gray line in phase space plots indicates the deterministic solution of the system obtained via the conventional
Runge-Kutta numerical integration procedure.

the parameter L. Perc et al. [8] have shown that signals
become increasingly noise free and smooth, i.e. determin-
istic, as the number of coupled cells increases. We can sub-
stantiate this in Figures 2 (β = 0.60) and 3 (β = 0.639),
where phase space portraits for a single cell (upper left
panel) and for the group of 10×10 cells (upper right panel)
are featured. While the single cell signal obviously yields
an erratic and non-smooth solution in the phase space,
the signal of the mean field of coupled cells is remarkably
noise-free and smooth.

To determine the level of stochasticity in the system,
we use the method originally proposed by Kaplan and
Glass [30], which is based on measuring average direc-
tional vectors in a coarse-grained phase space. The idea is
that, in case of a deterministic solution, neighboring tra-
jectories in a small portion of the phase space should all
point in the same direction, i.e. not cross, thus assuring
uniqueness of solutions, which is the hallmark of deter-
minism. The determinism factor 0 ≤ κ ≤ 1 is obtained
by calculating the average length of all resultant vectors
pertaining to a particular phase space box, whereby the
resultant vectors are obtained by assigning a unit vec-
tor to each pass of the trajectory through a particular
phase space box and calculating their vector sum. Hence,

if the dynamics of oscillations is deterministic, the aver-
age length of all directional vectors κ will be 1, while for
a completely random system κ = 0. Lower two panels of
Figures 2 and 3 display directional vector fields for the
corresponding phase space plots shown in the upper two
panels. Figure 4 features results of the determinism test
for different L. It is obvious that with the increasing num-
ber of coupled cells κ → 1.

However, by considering results presented in Figures 2
– 4 more precisely, another fascinating feature can be ob-
served. It is obvious that although for L ≥ 8 the solutions
are essentially deterministic (κ > 0.98) for both bifurca-
tion parameter values, on the one hand, the solution for
β = 0.60 evidently approaches the deterministic limit, but
on the other hand, the solution for β = 0.639 fails to settle
onto the limit cycle attractor, which characterizes the de-
terministic solution. In fact, these solutions in the phase
space remarkably resemble chaotic attractors. In order to
confirm this, we calculate the return maps, the normalized
autocorrelation functions and the maximal Lyapunov ex-
ponents for the solution of 10×10 cells for both bifurcation
parameter values.

In Figure 5 (left panel) the return map is presented,
where the main successive maxima of cytosolic calcium
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Fig. 3. Phase space plots (top row) obtained via stochastic integration (black line), and the pertaining average directional
vector field approximations (bottom row) for one cell (left column) and the collective dynamics of 10 × 10 cells (right column)
for β = 0.639. The gray line in phase space plots indicates the deterministic solution.

concentration are plotted against their predecessors. It can
nicely be noted that for β = 0.60 the maximums are lo-
calized around a fixed point and for β = 0.639 they form
an almost continuous curve, which evidences chaotic be-
havior.

In order to quantify the temporal order of Ca2+ os-
cillations we also compute the normalized autocorrelation
function

C(τ) =
〈z̃tz̃t+τ 〉
〈z̃2〉 , (9)

where z̃ = z − 〈z〉. We can observe in the middle panel
of Figure 5 that for the bifurcation parameter value set
deeply within the periodic regime the amplitude of undu-
lations of C(τ) remains virtually unchanged, but in case
the bifurcation parameter is set close to the chaotic regime
this amplitude decreases continuously. Since both ana-
lyzed traces are exposed to the same amount of stochastic-
ity (see Fig. 4), the obvious difference in the decay of the
two autocorrelation functions can be ascribed only to the
qualitative difference in their dynamics. Accordingly, we
conclude that by β = 0.60 the trace is periodic, whereas
by β = 0.639 the apparent decay of the autocorrelation
function clearly evidences chaotic behavior.

Fig. 4. Determinism factor of phase space solutions (z, y, a)
obtained by different L for β = 0.60 and β = 0.639.

Finally, the maximal Lyapunov exponent λmax is
calculated by using the algorithm proposed by Wolf
et al. [31]. Note that, since the phase space solution was
obtained via Monte Carlo simulations, we employ the
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Fig. 5. Return map (β = 0.60 black circles; β = 0.639 gray triangles), autocorrelation function (β = 0.60 thin line; β = 0.639
thick line), and the convergence of the maximal Lyapunov exponent for the phase space solutions (z, y, a) obtained by 10 × 10
coupled cells (β = 0.60 thin line; β = 0.639 thick line).

Fig. 6. Bifurcation diagram for coupled cells (L = 10). Black
circles indicate minima and maxima of z obtained via deter-
ministic integration, whereas gray squares were obtained by
using the stochastic integration procedure. The marked area
represents the region of internal-noise induced chaos, as deter-
mined more rigorously in Figure 5 for β = 0.639 (pink line).

algorithm developed in the framework of nonlinear time
series [32], only that presently the original phase space
given by the set of variables (z, y, a), instead of the re-
constructed phase space from a single observed quantity
is used. In Figure 5 (right panel) the maximal Lyapunov
exponent for both bifurcation parameter values is shown.
We can observe, that it converges very convincingly to a
positive value λmax ≈ 0.14 s−1 for β = 0.639, while the
value for β = 0.60 is zero.

Our calculations reveal that internal noise can induce
chaos in the collective dynamics of diffusively coupled cells
in case the bifurcation parameter is set sufficiently close to
the deterministically chaotic regime. Thus, we argue that
internal noise is able to anticipate the abrupt bifurcation
leading to chaos. In order to confirm this reasoning con-
clusively, we show in Figure 6 an insert of the bifurcation
diagram for the collective dynamics of cytosolic calcium
for 10 × 10 coupled cells. Although the coupling slightly

shifts the deterministic occurrence of chaos towards higher
values of β (compared to single cell dynamics; see Fig.
1), the value of β = 0.639 is still sufficiently close to the
deterministically chaotic regime for internal noise to an-
ticipate it. It can be observed nicely that the bifurcation
diagram for coupled cells obtained via the stochastic inte-
gration procedure (gray squares) differs substantially from
that obtained via deterministic integration (black circles),
but only within the region close to the bifurcation leading
to chaos, whereas outside the marked area changes are
limited to small-amplitude fluctuations of min/max val-
ues of z. While the bifurcation diagram obtained via the
stochastic integration procedure itself could not be con-
sidered a stringent test for noise-induced chaos, it never-
theless provides conclusive evidences for the mechanism
behind the observed phenomenon, and together with the
preceding thorough analysis presented in Figures 4 and 5,
allows us to conclude that internal noise is able to induce
chaos in the collective dynamics of diffusively coupled cells
via a premature inducement of an abrupt transition to
chaos occurring within the fully deterministic model.

4 Discussion

We study the transition from stochastic to determinis-
tic behavior in the collective dynamics of diffusively cou-
pled cells. While the stochastic simulation of a single cell
at physiologically relevant conditions, whether uncoupled
or coupled with its neighbors, exhibits a largely stochas-
tic oscillatory behavior with well-expressed baseline and
peak height fluctuations, these stochastic effects vanish
in the collective dynamics of diffusively coupled cells for
large enough ensembles. Remarkably, if the bifurcation pa-
rameter places the system close to chaotic behavior, the
stochastic solution does not settle onto the limit cycle at-
tractor even for large ensembles, despite the fact that (for
coupled or individual cells) the deterministic integration
procedure yields fully periodic behavior. An abrupt tran-
sition to chaos is a necessary precondition to observe this
phenomenon; meaning it cannot be observed for bifurca-
tion parameter values placing the system in the midst of
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periodic behavior. Namely, when the distance from the
bifurcation to chaos is too large, internal stochasticity is
not capable of prematurely anticipating the bifurcation
and induce chaos (see Fig. 6). The abrupt transition to
chaos directly postulates the ability to place the system
close to the chaotic behavior, and thus warrants the nec-
essary closeness to the bifurcation. This set-up, however,
may not be possible in case of the period doubling route to
chaos due to the many intermediate cascades, unless we
initially put the system deeply into the period doubling
regime (i.e. close to chaos; see [19]). Similar conclusions,
indicating that larger noise intensities are required when
the distance from chaos increases, were also obtained for
the Lorenz system where the authors observed noise in-
duced chaos out of a stable fixed point [25].

Most remarkably, this is still true for very high num-
bers of coupled cells that are comparable with numbers
of cells in a small part of tissue, by which the collec-
tive solution is smooth and deterministic, yet not iden-
tical with the deterministic limit, which suggests that the
physiologically omnipresent stochastic disturbances at the
cellular level might be responsible for chaotic behavior
usually observed experimentally in recordings of real-life
functioning of whole organs. Namely, it is known that
real-life experimental recordings of cellular functions often
yield stochastically burdened traces [3,33], which we have
also confirmed presently by our theoretical calculations.
On the other hand, recordings of physiological functions
at the organic level are often not only deterministic in
appearance, but also chaotic, which has been confirmed
mathematically several times for ECGs [34,35], human lo-
comotion [36], mammal vocalization [37] and human respi-
ration [38]. Our theoretical results suggest that the chaotic
behavior may originate from proximity to special bifurca-
tion points and the ubiquitous stochastic disturbances at
the cellular level, which vanish at large scales.

Matjaž Perc acknowledges support from the Slovenian Re-
search Agency (grant Z1-9629).
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